skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Tong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recycling underutilized resources from food waste (FW) to agriculture through hydrothermal carbonization (HTC) has been proposed to promote a circular economy (CE) in food-energy-water (FEW) nexus. However, most HTC studies on FW were conducted at laboratory scale, and little is known on the efficacy and feasibility of field application of HTC products from FW, i.e. the aqueous phrase (AP) and solid hydrochar (HC), to support agriculture production. An integrated pilot-scale HTC system was established to investigate practical HTC reaction conditions treating FW. A peak temperature of 180 ◦C at a residence time of 60 min with 3 times AP recirculation were recommended as optimal HTC conditions to achieve efficient recovery of nutrients, and desirable AP and HC properties for agriculture application. Dilution of the raw AP and composting of the fresh HC are necessary as post-treatments to eliminate potential phytotoxicity. Applying properly diluted AP and the composted HC significantly improved plant growth and nutrient availability in both greenhouse and field trials, which were comparable to commercial chemical fertilizer and soil amendment. The HTC of FW followed with agricultural application of the products yielded net negative carbon emission of 􀀀 0.28 t CO2e t􀀀 1, which was much lower than the other alternatives of FW treatments. Economic profit could be potentially achieved by valorization of the AP as liquid fertilizer and HC as soil amendment. Our study provides solid evidences demonstrating the technical and economic feasibility of recycling FW to agriculture through HTC as a promising CE strategy to sustain the FEW nexus. 
    more » « less
  2. Abstract Magnetic order in most materials occurs when magnetic ions with finite moments arrange in a particular pattern below the ordering temperature. Intriguingly, if the crystal electric field (CEF) effect results in a spin-singlet ground state, a magnetic order can still occur due to the exchange interactions between neighboring ions admixing the excited CEF levels. The magnetic excitations in such a state are spin excitons generally dispersionless in reciprocal space. Here we use neutron scattering to study stoichiometric Ni 2 Mo 3 O 8 , where Ni 2+ ions form a bipartite honeycomb lattice comprised of two triangular lattices, with ions subject to the tetrahedral and octahedral crystalline environment, respectively. We find that in both types of ions, the CEF excitations have nonmagnetic singlet ground states, yet the material has magnetic order. Furthermore, CEF spin excitons from the tetrahedral sites form a dispersive diffusive pattern around the Brillouin zone boundary, likely due to spin entanglement and geometric frustrations. 
    more » « less
  3. Abstract Electronic correlation is of fundamental importance to high temperature superconductivity. While the low energy electronic states in cuprates are dominantly affected by correlation effects across the phase diagram, observation of correlation-driven changes in fermiology amongst the iron-based superconductors remains rare. Here we present experimental evidence for a correlation-driven reconstruction of the Fermi surface tuned independently by two orthogonal axes of temperature and Se/Te ratio in the iron chalcogenide family FeTe 1− x Se x . We demonstrate that this reconstruction is driven by the de-hybridization of a strongly renormalized d x y orbital with the remaining itinerant iron 3 d orbitals in the emergence of an orbital-selective Mott phase. Our observations are further supported by our theoretical calculations to be salient spectroscopic signatures of such a non-thermal evolution from a strongly correlated metallic phase into an orbital-selective Mott phase in d x y as Se concentration is reduced. 
    more » « less